

•

The Use and Abuse of Non-hashing Keys in IMAGE

1

The Use and Abuse of Non-hashing
Keys in IMAGE

Fred White

Senior Research Scientist

Adager Corporation
Sun Valley, Idaho

83353-3000 U.S.A.

Tel.

(208) 726-9100

Fax

(208) 726-8191

fred@adager.com http://www.adager.com

Background

The first set of specifications for IMAGE/3000 proposed that all
master dataset primary address assignment be accomplished by
hashing the key of each master entry and reducing the result
modulo the capacity of the master dataset.

In late November of 1971, some reviewers suggested that
application designers might want the application to have con-
trol of this primary address assignment and requested that we
modify our specifications to provide such a capability.

Our initial response was to require the key field of such mas-
ters to be a 16-bit (or 32-bit) integer whose value would be
treated as invalid if it was less than 1 or greater than the
capacity.

If we had left it at that, we would have provided the user
with master datasets using this simple direct access method.

This was aesthetically displeasing in that it restricted both
the length of keys and the values of keys.

We eliminated the former restriction by allowing any key
length while using only the low order 31 bits as input in calcu-
lating the primary address.

We eliminated the latter restriction by reducing this 31-bit
value modulo the capacity N (with a zero result mapping into
N).

The user also had to have some method of specifying to
IMAGE, via the database schema, which type of primary
address calculation to apply for each master dataset.

It seemed only natural that IMAGE should apply hashing to
keys of data types U and X and that the “integer” data types I, J
and K were perfect for use in the generalized direct access

2

The Use and Abuse of Non-hashing Keys in IMAGE

•

method of primary address assignment. It was less obvious
which method to employ with data types P, Z and R.

Then one of us noticed that the HP3000 internal representa-
tions of the mantissas for IMAGE data types I, J, K and R were
all in binary format and that P and Z were not. On this rather
weak basis we decided that all keys of non-binary format
would employ hashing and that the others would not.

Thus, hashing is employed for keys of data types U, X, P and
Z but not for keys of data types I, J, K and R.

Synonyms

Two or more key values are said to be synonyms if they are
assigned the same primary address.

Whenever a new entry is assigned a primary address which
matches that of one or more existing entries, IMAGE locates it
at an alternate address close by its synonyms.

It attempts to place it in the block containing the entry at
the primary address. If this block is filled, IMAGE serially
searches subsequent blocks until it finds an unoccupied loca-
tion to place the new entry.

IMAGE links all synonyms for a given primary address
together into what is known as a synonym chain.

If there is no severe clustering (see below) and if the dataset
is not almost full and if the blocking factor is large relative to
the average chain length, most synonym chains will reside in a
single disc block and thus have little impact on performance
since they can all be made present in memory with a single disc
read.

For hashing keys, the average synonym chain length can be
kept small by:

1.

using keys at least 10 (preferably 12) characters
long. (IMAGE's hashing algorithm does a better
job with long keys than with short ones.)

2.

using key values which are not excessively uni-
form in their content

3.

using capacities 15 to 30 percent larger than the
expected number of entries

Also, their negative impact on performance can be reduced
by:

1.

making the blocking factor large relative to the
average synonym chain length.

2.

not allowing the dataset to become nearly full.

For heavily accessed masters, try to have a blocking factor of
at least 6 or 8. If your blocking factor is less than 6, consider
replacing the manual master with an automatic master and a

•

The Use and Abuse of Non-hashing Keys in IMAGE

3

related detail containing the data portion of the original man-
ual master.

Clustering

It is entirely possible, particularly for non-hashing keys, that
many of the records of a dataset will fill contiguous blocks in
one or more portions of a dataset while other portions are
empty, or nearly so. Such a phenomenon is referred to as clus-
tering.

Clustering is harmless as long as there are no synonyms.
Otherwise, clustering is typically dangerous, as we shall see.

The Use of Non-
Hashing Keys

An excellent use of the direct access method provided by non-
hashing keys would arise if the key, for example, were DAY-OF-
YEAR.

In this situation, the master dataset would only require a
capacity of 366 (any higher would be wasted disc space).

The data item DAY-OF-YEAR could be defined as type I and
the key values would be the positive integers 1, 2,..., 366.

As long as the application prevented other key values from
occurring, no synonyms would ever arise, there would be no
waste space, and IMAGE performance would be optimal.

Note also that the record with key value of 1 would be
record number 1, the one with key value of 2 would be record
number 2, and so forth. This “natural” ordering might be of
some advantage to your application.

You may find other such situations, perhaps involving badge
numbers, building numbers, or whatever, where you might
want to employ integer keys (i.e., data types I1 or I2) in this
manner. Usually, however, this will involve some wasted disc
space. Only you can decide if the wasted space is too exorbitant
for the benefits offered.

The Clustering Pitfall

My first live encounter with a misuse of integer keys arose in
1978.

One Friday in 1978 I received a phone call from an insur-
ance firm in the San Francisco Bay Area. I was told that their
claims application was having serious performance problems
and that, in an attempt to improve the situation, they had, on
the previous Friday, performed a DBUNLOAD, changed some
capacities and then started a DBLOAD which did not conclude
until the early hours of Tuesday morning!

They were a $100,000,000-plus company which couldn't
stand the on-line response they were getting and couldn't

4

The Use and Abuse of Non-hashing Keys in IMAGE

•

afford losing another Monday in another vain attempt to
resolve their problems.

Investigation revealed that claims information was stored in
two detail datasets with paths to a shared automatic master.
The search fields for these three datasets was a double integer
key whose values were all of the form YYNNNNN (shown in
decimal) where YY was the two-digit representation of the year
(beginning with 71) and where each year NNNNN took on the
values 00001, 00002, etc. up to 30,000.

Although the application was built on IMAGE in late 1976,
the earlier claims information (from 1971 thru 1976) was
loaded to be available for current access. I do not recall the
exact capacity of the master dataset but, for purposes of dis-
playing the nature of the problem (especially the fact that it
didn't surface until 1978) I will assume a capacity of 370,000.

Although the number of claims per year varied the illustra-
tion will also assume that each year had 30,000.

The first claim of 1971 was claim number 7100001 to which,
using a capacity of 370,000, IMAGE would assign a primary
address of 70,001. This is because 7,100,001 is congruent to
70,001 modulo 370,000.

The 30,000 claims of 1971 were thus assigned the successive
addresses 70,001 through 100,000.

Similar calculations show that the claims for each year were
stored in clusters of successive addresses as follows:

Note that no two records had the same assigned address and
thus that there were no synonyms and that all DBPUTs,
DBFINDs and keyed DBGETs were very fast indeed!

Along came 1978! Unfortunately 7,800,001 is congruent to
70,001 so that the first DBPUT for 1978 creates the very first
synonym of the dataset. It is, in fact, a synonym of claim
7100001.

DBPUT attempts to place this synonym in the block occu-
pied by claim 7100001 but that block is full so DBPUT
performs a serial search of the succeeding blocks to find an

Year Claim numbers Assigned addresses

1971 7100001-7130000 70,001-100,000

1972 7200001-7230000 170,001-200,000

1973 7300001-7330000 270,001-300,000

1974 7400001-7430000 1-30,000

1975 7500001-7530000 100,001-130,000

1976 7600001-7630000 200,001-230,000

1977 7700001-7730000 300,001-330,000

•

The Use and Abuse of Non-hashing Keys in IMAGE

5

unused location. In this case, it searches the next 60,000
records before it finds an unused address at location 130,001!
Even with a blocking factor of 50, this required 1200 additional
disc reads making each DBPUT approximately 200 times as
slow as those of all previous years!

Note that the next claim of 1978 (with claim number
7800002) is congruent to 70,002 so is a synonym of 7100002
and also leads to a serial search which ends at location 130,002!
Thus each successive DBPUT results in a search of 60,000
records 59,999 of which it had inspected during the preceding
DBPUT!

Clustering had claimed another victim! The designer of this
system had unknowingly laid a trap which would snap at a
mathematically predictable time, in this case 1978. After strug-
gling with this problem for months, the user escaped the
clustering pitfall by converting to “hashed keys” (in both the
database and the application modules); a very expensive
conversion!

Note that the problem was not a synonym problem in the
sense that synonym chains were long nor was it a “fullness”
problem since the master dataset was less than 57% full when
disaster struck.

The problem was due to the fact that the records were
severely clustered when the first synonym occurred and
DBPUT's space searching algorithm is efficient only in the
absence of severe clustering.

Note that the performance of DBFIND and DBGET was
excellent.

A similar, more modest pitfall would have been encountered
if, in the above example, the claim numbers had been of the
form NNNNNYY with the same capacity of 370000. In this
case, the performance of DBPUTs, DBFINDs and keyed
DBGETs would all degrade over time but would never reach
the disastrous level of the DBPUTs of the example. In this case,
the degradation would arise due to the length of synonym
chains and due to local clustering.

Note that this modest pitfall can be eliminated simply by
changing the capacity, for example, to 370010.

Note however that this problem would still arise if the capac-
ity were merely changed, for example, to 370001.

The Synonym Pitfall

An even worse case would arise if the designer elected to use a
key whose data type was R4 and whose key values were greater
than zero and less than 10 million.

6

The Use and Abuse of Non-hashing Keys in IMAGE

•

To understand why, one must be knowledgeable about the
format of 64-bit reals as represented on the HP3000 family of
computers.

The leading bit is the sign bit, the next 9 bits are the expo-
nent, and the remaining 54 bits are the mantissa excluding the
leading bit.

As a consequence, the floating point format of all integers
less than 8,388,609 (2**23+1) is such that the low order 31 bits
are all zeroes. Therefore ALL entries would be in a single syn-
onym chain having the dataset capacity as its primary address!

In adding a new entry, DBPUT would have to traverse the
entire synonym chain to ensure that the key value of the new
entry was not a duplicate before adding it to the chain. This
would have an impact on performance proportional to the
number of entries and inversely proportional to the blocking
factor.

Also, each DBFIND or mode 7 DBGET would, on average,
be forced to traverse half of the chain to locate the desired
entry!

I hope that you will NEVER use fields of data type R as key
fields.

Summary

Remember that, in electing to use non-hashing keys, the
designer has taken the responsibility for primary address
assignment out of the hands of IMAGE and placed it in the
hands of the application.

This should be done only if:

1.

some benefit will be derived by their use,

2.

the application has absolute control over key
value assignments,

3.

the values so assigned, together with the
assigned dataset capacity, assure the designer
that the application will never encounter the
clustering or synonym pitfalls.

Footnote

Avid readers of IMAGE articles might be surprised at the
absence of any reference to primary numbers as capacities for
master data sets.

The reason for this is that I consider any argument for or
against their use as, at best, an academic exercise in futility and,
at worst, a “red herring”. Application designers and database
administrators can realize far greater performance improve-
ments by dealing with other, more significant, issues such as
those addressed in this paper.

	The Use and Abuse of Non-hashing Keys in IMAGE
	Background
	Synonyms
	Clustering
	The Use of Non- Hashing Keys
	The Clustering Pitfall
	The Synonym Pitfall
	Summary
	Footnote

